

Hunting Outbursting Young Stars with the Centre for Astrophysics and Planetary Science

Dirk Froebrich Jack Evitts

Alexander Scholz

And numerous other (Amateur) Astronomers

Making Stars and Planets

Young Star Accretion Disk Structure and Accretion Bursts

Photometric monitoring of Young Stars can achieve resolution of disk structures down to 0.01AU independent of distance

As well as rotation periods and temperature, size and position of hot/cold spots on YSO surfaces

HOYS-CAPS Goals

Photometric Monitoring

long-term (~25yr) high-cadence (1...2 observations per day per filter) multi-wavelength (U, B, V, R, Hα, I) photometric monitoring

of

young (<10Myr) nearby (d<1kpc) star clusters and star forming regions (currently 22 regions)

with small or intermediate size telescopes

HOYS-CAPS Targets (selection)

Pelican Nebula

NGC7129

Christmas Tree Cluster

Elephant Trunk Nebula

NGC1333

Rosette Nebula

IC348

Typical UK Satellite Image and UK Amateur Astronomy Societies

HOYS-CAPS CITIZEN SCIENCE

Initial, User led:

- ID of target region and devise
- Astrometry
- Source Extractor photometry, calibration into reference system via Photofunction and $P_4(m)$

Post-Processing:

- Identification of non-variables via low Stetson index
- Correction of colour terms using $P_2(m)+P_2(V-I)$

Data Calib	ation	
	HOYS-CAPS Lightcurve plot Upload Process Files Objects Manage Files Admin admin's Profile Logout	
	Processing files	
	Fiter Results Of G	et Help
	[5025] v1450cyg_FESA_110808 fit [sostro] [5025] v1450cyg_FESA_110808 fit [sostro] [ration
	[5778] 29AugustPelican11best.FTS (29AugustPelican11best.FTS) Observation target Metaduta Astrometric Calibration Photometric Calibration Photometric Calibration	ration
	[11909] 11909] 1509 16_114_NGC7129_incl_205_V380Cep_R_2458542.56789.fts Observation target Metadata Astrometric Calibration Photometric Photometric Calibration Photometric Calibration Photometric Photometric Photometric Calibration Photometric Ph	ration
	[11919] 11910_16_114_NGC7129_md_205_V350Cep_R_2456412.56882 Ms Observation target Metadata Astrometric Calibration Photometric Calibration (deep_NGC7129_mesenes113_2019-02-27_R/fts) [jochen]	ration
e	Astrometry.net	
, calibration otofunction	$f(m^{i}) = A \cdot \log\left(10^{B \cdot (m^{i} - C)} + 1\right) + \mathcal{P}_{4}(m^{i})$	
	3 - 2 - [6][1] - [1] - [1] - 1] - 1] - 1] - 1] -	
	-2 -3 -4 12 14 16 18	
s via	Uncalibrated Magnitude [mag] Median filtered data — max_use — min_use · Zero line · Original data	
sing $P_2(m) + P_2(V)$		and a second
	-0.4 - 10 12 14 16 18 Calibrated Magnitude [mag] may use Calibrated magnitudes (<30 & >5) Calibrated magnitudes 2 Zero line Vunce	rtainty

Data Calibration

Before Colour Correction: RMS=0.180mag After Colour Correction: RMS=0.040mag

Example: IC5070, I-Band, User #16

Data Calibration

Example, 2MASS J20515188+4422274

Before Colour Correction

After Colour Correction

lightcurves of ~2000 known YSOs in V, R, I

- better than 0.2mag photometry
- >50 datapoints per filter
- in at least two filters

We cover so far in: V-Band: 3700yrs R-Band: 5200yrs I-Band: 6500yrs

Lightcurves median smoothed with 150d

Dips/Bursts identified as more than 2.5σ outliers in magnitude with at least 2 datapoints in at least two of the filters.

Dip Detection Example

lightcurves of ~2000 known YSOs in V, R, I

- better than 0.2mag photometry
- >50 datapoints per filter
- in at least two filters

We cover so far in: V-Band: 3700yrs R-Band: 5200yrs I-Band: 6500yrs

Lightcurves median smoothed with 150d

Dips/Bursts identified as more than 2.5σ outliers in magnitude with at least 2 datapoints in at least two of the filters.

Burst Detection Example

Dip Depth and Duration

Burst Height and Duration

YSO Rotation Periods

YSO Rotation Periods

The Weired and Wonderful

Surprise datasets

Stan Waterman's Data

A time-resolved picture of a very low-mass star between EXors and FUors

A. Sicilia-Aguila^{1,2}, A. Oprandi^{3,2}, D. Froebrich⁴, M. Fang⁵, J. L. Prieto^{6,7}, K. Stanek^{8,9}, A. Scholz², C.S. Kochanek^{8,9}, Th. Henning¹⁰, R. Gredel¹⁰, T.W.- S. Holoien^{7,8}, M. Rabus^{11,10}, B. J. Shappee^{12*}, S. J. Billington⁴, J. Campbell-White⁴, and T. J. Zegmott⁴

A&A, 2017, 607, 127

A survey for variable young stars with small telescopes: First results from HOYS-CAPS

D. Froebrich^{1*}, J. Campbell-White¹, A. Scholz², J. Eislöffel³, T. Zegmott¹[†],
S.J. Billington¹[†], J. Donohoe¹[†], S.V. Makin¹[†], R. Hibbert¹[†], R.J. Newport⁴[†],
R. Pickard⁵[‡], N. Quinn⁵[‡], T. Rodda⁵[‡], G. Piehler⁶[‡], M. Shelley⁷[‡], S. Parkinson⁵[‡],
K. Wiersema^{8,9}[‡], I. Walton^{5,10}[‡]

MNRAS, 2018, 478, 5091

Variability in IC 5070: two young stars with deep recurring eclipses*

DIRK FROEBRICH,¹ ALEKS SCHOLZ,² JUSTYN CAMPBELL-WHITE,¹ JAMES CRUMPTON,¹ EMMA D'ARCY,¹ SALLY V. MAKIN, TARIK ZEGMOTT,¹ SAMUEL J. BILLINGTON,¹ RICKY HIBBERT,¹ ROBERT J. NEWPORT,³ AND CALLUM R. FISHER¹

¹Centre for Astrophysics and Planetary Science, University of Kent, Canterbury, CT2 7NH, UK ²SUPA, School of Physics & Astronomy, University of St. Andrews, North Haugh, KY16 9SS, United Kingdom ³Functional Materials Group, School of Physical Sciences, University of Kent, Canterbury, CT2 7NH, UK

(Received July 2, 2018; Revised July 2, 2018; Accepted ?)

Submitted to RNAAS

RNAAS, 2018, 2, 61

Optical brightness and colours of V2492Cyg before, during and after the recent record peak in brightness

ATel #10259; Dirk Froebrich (University of Kent), Justyn Campbell-White (University of Kent), Tarik Zegmott (University of Kent), Samuel J. Billington (University of Kent), Sally V. Makin (University of Kent), Justin Donohoe (University of Kent) on 12 Apr 2017; 17:56 UT Credential Certification: Lynne Hillenbrand (lah@astro.caltech.edu)

Subjects: Optical, Young Stellar Object, Pre-Main-Sequence Star

Fig. 4. Lightcurve from the Beacon Observatory. The magnitudes are relative to the data from JD=2457717.594. The data show the rapid decrease of the source flux during January-February 2017 and stabilization from February-March 2017.

Figure 4. Figure showing the slope α in the V vs V-I diagram and the asymmetry index M for the YSOs in our sample. The larger symbols and error bars indicate the mean and *rms* of all stars in the different groups. The group number is also indicated. All outliers (summarised in G7) are not shown as they are partly outside the parameter space of the plot (e.g. at negative slope values). The colours and symbols are the same as in Fig. 3. The dashed horizontal lines separate the dippers (top) from the symmetric light-curves (middle) and the bursters (bottom). The dashed horizontal lines separate the more streme bursters and dippers. The dashed vertical lines indicate the three regions for α discussed in the text.

ATel, 2018, 10259

Get your name on a scientific paper...

Gaia 17bpi: An FU Ori Type Outburst

Lynne A. Hillenbrand,¹ Carlos Contreras Peña,² Sam Morrell,² Tim Naylor,² Michael A. Kuhn,¹ Roc M. Cutri,³ Luisa M. Rebull,³ Simon Hodgkin,⁴ Dirk Froebrich,⁵ and Amy K. Mainzer⁶

Get your name on a scientific paper...

A survey for variable young stars with small telescopes: II - The periodically dipping YSO V 1490 Cyg analysed by HOYS-CAPS

Jack J. Evitts¹, Dirk Froebrich^{1*}, Aleks Scholz², Jochen Eislöffel³, Justyn Campbell-White^{1,4}, Will Furnell^{1,5}, Thomas Urtly⁶[†], Roger Pickard,⁶[†], Klaas Wiersema,^{7,8}[†], Pavol A. Dubovský,⁹[†], Igor Kudzej,⁹[†], Ramon Naves,¹⁰[†], Mario Morales Aimar, ^{10,11}†, Rafael Castillo García, ^{10,11,12}†, Tonny Vanmunster, ^{13,14}†, Erik Schwendeman,¹¹[†], Francisco C. Soldán Alfaro,^{10,11}[†], Stephen Johnstone,^{6,11}[†], Rafael Gonzalez Farfán,¹⁰[†], Thomas Killestein,^{6,7}[†], Jesús Delgado Casal,¹⁰[†], Faustino García de la Cuesta,^{10,15}[†], Dean Roberts,¹⁶[†], Ulrich Kolb,¹⁶[†], Luís, Montoro,¹⁰[†], Domenico Licchelli,¹⁷[†], Alex Escartin Perez,¹⁰[†], Carlos Perelló Perez,^{10,18}[†], Marc Deldem,¹¹[†], Stephen R.L. Futcher,^{6,19}[†], Tim Nelson,¹⁹[†], Shawn Dvorak,¹¹[†], Dawid Moździerski,²⁰†, Nick Quinn,⁶†, Krzysztof Kotysz,²⁰†, Katarzyna Kowalska,²⁰†, Przemysław Mikołajczyk,²⁰[†], George Fleming,⁶[†], Mark Phillips,²¹[†], Tony Vale,^{6,22,23}[†]. Franky Dubois,^{24,25}†, Ludwig Logie,^{24,25}†, Steve Rau,^{24,25}†, Siegfried Vanaverbeke,^{24,25,26}†, Barry Merrikin,¹⁹[†], Esteban Fernández Mañanes,¹⁰[†], Emery Erdelvi,^{11,27}[†], Juan-Luis Gonzalez Carballo,¹⁰[†], Fernando Limon Martinez,¹⁰[†], Tim Long,^{?†}, Adolfo San Segundo Delgado,¹⁰[†], José Luis Salto González,^{10,28}[†], Luis Tremosa Espasa,¹⁰[†], James Crumpton,¹[‡], Samuel J. Billington,¹[‡], Emma D'Arcy,¹[‡], Sally V. Makin,¹[‡], Lord Dover, ¹[‡], G.Piehler, [?][†], L.Phillips, [?][†], and rew, [?][†], A.Timar, [?][†], seflda, [?][†], ¹Centre for Astrophysics and Planetary Science, School of Physical Sciences, University of Kent, Canterbury CT2 7NH, UK ²SUPA School of Physics and Astronomy University of St Andrews North Haugh St Andrews KY16 9SS 11K

Summary

HOYS-CAPS UBVRIH α monitoring of YSOs with Amateur data is very successful and very simple to take part in

We can accurately (σ =0.01-0.03mag) calibrate the inhomogeneous photometric data (variety of filters, cameras and observing conditions)

We can establish accretion burst and dip properties including knowledge of detection biases

We can measure rotation periods at several wavelength and establish time dependent amplitudes and phases

Any Questions?

df@star.kent.ac.uk

You

astro.kent.ac.uk/~df/hoyscaps/index.html HOYS-CAPS Citizen Science Project HOYS-CAPS

