10+ Years of HADS Photometry

Patrick Wils

Vereniging Voor Sterrenkunde, Belgium

Grimbergen 14-15 September 2019

Dwarf Cepheids / RRs

- Delta Scuti stars
 - On or near the main sequence
 - Pre- (T Tau) + post-MS
 - Spectral type A-F
 - Cepheid instability strip
 - Generally: small amplitude
 - < 0.1 mag
 - Multiperiodicity:
 - periods 1 5 hours
 - Non-radial pulsations
- High Amplitude Delta Scuti stars
 - Amplitude > 0.2-0.3 mag
 - Radial pulsations
 - Slowly rotating

- SX Phe-stars
 - Population II (Halo)
 - Low metallicity
 - Low mass
 - 2 old stars merged?

HADS Light Curves

- Asymmetric
 - Fast brightening / slow fading
 - Sharp maximum / broad minimum
- Many different shapes
 Humps / bumps
- Shape is not related to period
 - → Hertzsprung sequence in Cepheids
 - Metallicity?

3

The HADS Project

- Originally started in 2005
 - Small number of observers from Belgium, Spain, Greece and USA
- "Official" start in 2008 as a VVS-WGVS project
 - Introduction to CCD photometry
- Advantages
 - Full light curve after a few hours
 - No predictions needed
- Purpose: detect period variations
 - Try observing a number of HADS once/month

- Traditionally: Polynomial fit
- Disadvantages
 - Degree of fit "arbitrary"
 - Many free parameters
 - "Bends" to the data (e.g. differential extinction trend)

- Traditionally: Polynomial fit
- Disadvantages
 - Does not use all data (only around maximum)
 - Choose which data points to use
 - Generally does not use data when the star varies fastest

- Traditionally: Polynomial fit
- Disadvantages
 - Degree of fit "arbitrary"
 - Many free parameters
 - "Bends" to the data (e.g. differential extinction trend)
 - Does not use all data (only around maximum)
 - Choose which data points to use
 - Generally does not use data when the star varies fastest
 - -> Calculated time depends on who does the calculation

Determining Time of Maximum: Model Curve

- Fourier series
 - Mean light curve based on several cycles
 - Depends on filter used

- Fit observations to model curve
 - Only 2 free parameters
 - Mean magnitude (vertical shift)
 - Time (horizontal shift)
 - Shift light curve so that difference in magnitude (vertical distance) is minimal (least squares)

Model Curve: Advantages

- All data are used
- Fastest variation weighs more in the end result
- Any phase can be chosen, not only maximum
- Maximum does not have to be observed
- Consistent times

Grimbergen 14-15 September 2019

Uncertainty on Time of Maximum

- Mean squared difference in time (horizontal distance) between observations and model curve
 - Weighted by slope of light curve
 - More weight when star varies fastest

Uncertainty on Time of Maximum

- Between 1 and 2 standard deviations of calculated times
- Realistic estimate

Grimbergen 14-15 September 2019

Causes for Period Changes: Binarity

• SZ Lyn: binary system (light time effect, cfr. Doppler)

- Confirmed by radial velocity; Moffett et al. 1988
- Binary period: 1190d, amplitude O-C ~ 20 minutes
- Pulsation period slowy increases also

1988 ephemeris still extremely accurate

DW Psc: Binary!

- Period 6.0 years
- Amplitude 2 * 8.7 minutes (= 1.04 AU)
- Companion > 0.6 M $_{\odot}$ if HADS = 2 M $_{\odot}$

Grimbergen 14-15 September 2019

V572 Cam: Another Binary!

- Orbital period: 167 days
- O-C amplitude: 2 * 68 seconds (1/3 orbit Mercury)

template

6723.40

6723.38

1.1

6723.32

6723.34

6723.36

JD - 2450000

• If HADS = 2 M $_{\odot}$ and i = 90°: companion = 0.41 M $_{\odot}$

More Binaries? KZ Lac and KZ Hya

• P ~ 5 and 25 years?

 ~10 other HADS: less than 2 "cycles" of several months/years

Grimbergen 14-15 September 2019

Causes for Period Changes: Evolution

- Pulsation constant
 - $Q = P \sqrt{\rho}$
- Fusion H -> He
 - Main sequence
 - Star expands
 - Density decreases
 - Period increases
- Very slowly: < 10⁻⁷/year or: 10 ms/century

O-C ~ $\frac{1}{2}$ min/10 years

• Parabola in O-C-diagram

Observed Period Changes

- Many HADS: constant period
 - Accuracy of timings ~ 10 sec or more
- But many observed less than 10 years!
 - Survey data (ASAS, NSVS, ...): further back, less accurate

Grimbergen 14-15 September 2019

Observed Period Changes

Most observed linear period changes are too large
 V451 Dra: ~2 min / 10 years

Grimbergen 14-15 September 2019

Evolution?

10.1 10.2 10.3 10.4

10.5

7327.30

7327 34

7327.32 JD - 2450000

7327.36

- About as many period decreases as increases
- Changes much larger than predicted
- Not always a linear change
 - Often sudden changes

Other Causes of Period Changes?

• CY Aqr

- Since 1930: at least 5 period changes
- $-\sim$ constant period in between changes
- Very little theoretical work

Sudden Period Changes?

- V376 Cam
- At least 3 changes in 5 years
- Or is it cyclical after all?

Other O-C Diagrams

Grimbergen 14-15 September 2019

Deviations from Model Curve: Multiperiodicity

- Comparison of observations with model curve
 - Other frequencies?
 - 30 multiperiodic HADS found

Multiperiodicity

Grimbergen 14-15 September 2019

Multiperiodicity

• Time of maximum depends on additional frequencies

Grimbergen 14-15 September 2019

Multiperiodicity: O-C

- O-C method less accurate
 - Accuracy decreases when secondary amplitude increases
- Phase corrections needed

Period Change Statistics

- 170 HADS observed
- Multiperiodicity: 30
- (Quasi) Linear period changes: 10
- Cyclical period changes: 15 (to be confirmed)
- Irregular period changes: 15

Model Curves: Harmonic Amplitude vs. Frequency

Grimbergen 14-15 September 2019

Model Curves: Harmonic Phase vs. Frequency

Model Curves: 2nd vs. 1st Harmonic

Grimbergen 14-15 September 2019

HADS and Large Surveys

- More HADS are discovered
- Data can be used to calculate 1-2 maxima per year
- Can survey data be used to discover binaries?
- Ex. V572 Cam:
 - 4 years of ASAS-SN, 120 data points
 - -> No secondary cycle
 - 1 observer, same period: 25 nights, 3600 data points
 - -> Secondary cycle is obvious
- Photometry is still useful

Conclusion

- Many HADS do not show period changes (~ 10 years)
 - No evidence for evolution yet
 - When changes are present, they are larger than expected
- A number of HADS show sudden/irregular period changes
 - Theoretical work needed
- At least 2 HADS reside in a binary (apart from SZ Lyn)
 - More data needed for ~10 others (< 3 cycles)
- ~1 in 5 HADS is multiperiodic
 - Secondary amplitude > 0.01 mag
- 45 observers
 - Argentina, Belgium, Finland, Germany, Greece, Slovakia, Spain, The Netherlands, UK, USA