Evolved planetary systems around white dwarfs

Boris Gänsicke

THE UNIVERSITY OF WARWICK

The late evolution of planetary systems Signposts of evolved planetary systems

- 3. Bulk abundances
- 4. Architectures

The late evolution of planetary systems

A large fraction of solar-like stars has planets (e.g. Cassan et al. 2012, Nature 481, 167; Fressin et al. 2013, ApJ 766, 81)

A large fraction of solar-like stars has planets (e.g. Cassan et al. 2012, Nature 481, 167; Fressin et al. 2013, ApJ 766, 81)

What is the future of these systems?

What is the future of the solar system?

What can we learn from evolved planetary systems?

(almost) all planet host stars will become white dwarfs: *Earth-sized, ~solar-mass e degenerate objects*

Future white dwarf planetary systems

M=1.47M₀ MS life time: 3Gyr M=1.75M₀ MS life time: 1.6Gyr

 \Rightarrow Both will soon join the white dwarf populations

Signposts of evolved planetary systems:

Quiz time:

When was the first observational evidence for other planetary systems obtained?

Signposts of evolved planetary systems:

- metals

Quiz time:

When was the first observational evidence for other planetary systems obtained? $\Rightarrow 1917$

White dwarfs are chemically stratified Pure H or He atmosphere

$\begin{array}{l} \mathsf{Rwd} \approx \mathsf{0.01Ro} \approx \mathsf{R} \oplus \\ \mathsf{Mwd} \approx \mathsf{0.65} \ \mathsf{Mo} \end{array}$

g~10⁶ ms⁻²

g=9.8ms⁻²

Althaus et al. 2010, A&A Rev 18, 471

1917: Van Maanen's star

Van Maanen 1917, PASP 29, 258 1920, Cont. Mt. Wilson Obs. 182 Two FAINT STARS WITH LARGE PROPER MOTION.

1. In a search for companions of stars with large proper motion two plates of the region of Lalande 1299 were taken on September 15, 1914, and two on September 12, 1917. The plates do not show any companion of Lalande 1299 ($\mu = 1''.37$ in p = 146°.9), but reveal a star which has an even larger motion. This star is located

The 3rd closest white dwarf

Van Maanen 1917, PASP 29, 258 1920, Cont. Mt. Wilson Obs. 182 a) Anonymous 1, $a = 0^{h}43^{m}52^{s}$, $\delta = +4^{\circ}55'$. In Publications of the Astronomical Society of the Pacific, December 1917, I announced that this star has a proper motion of 3".01 annually; Seares found the photo-visual and photographic magnitudes to be 12.34 and 12.91, respectively. The spectrum is Fo. The absolute parallax of +0".246 gives for the absolute magnitudes, +14.3photo-visual and +14.8 photographic. It is, therefore, by far the faintest F-type star known at the present time.

Self-cleaning atmospheres Diffusion time scale « cooling age

The 3rd closest white dwarf

External pollution, but where do the metals come from?

Signposts of evolved planetary systems:

metalsdust discs

What might be a plausible source of dust grains this close to the remnant of a star that underwent a red giant expansion not quite 10⁹ yr ago? Occasional cometary impacts onto white dwarf stars may explain certain photospheric spectroscopic peculiarities¹² and it has been suggested recently that near-misses of comets and white dwarfs could effectively produce circumstellar gas in orbit around the white dwarf (M. Jura, F. Coroniti and C. Alcock, in preparation). Possible evidence for the

unlikely given the rapid depletion due to the Poynting-Robertson effect and the absence of any spectral peculiarities in its photospheric spectrum (J. Greenstein, personal communication) which might be expected¹² as a consequence of the rapid accretion of the orbiting material.

A more attractive possibility is that a warm brown dwarf is in orbit around G29 - 38. The upper mass limit for brown dwarfs

Zuckerman & Becklin 1987, Nature 330, 138

Koester et al. 1997, A&A 320, L57

Zuckerman & Becklin 1987, Nature 330, 138

Tidally disrupted asteroids Jura 2003, ApJ 584, L91

Debes et al. 2012, ApJ 747, 148 Veras et al. 2014, MNRAS 445, 2244 Veras et al. 2015, MNRAS 451, 3453

Zuckerman & Becklin 1987, Nature 330, 138

Dust around ~40 white dwarfs

Zuckerman et al. 1987, *Nature* 330, 138; Graham et al. 1990, ApJ 357, 216; Kilic et al. 2005, ApJ 632, L115; Becklin et al. 2005, ApJ 632, L119; Reach et al. 2005, ApJ 635, L161; Jura et al. 2007, AJ 133, 1927; Kilic et al. 2007, ApJ 660, 641; von Hippel et al. 2007, ApJ 662, 544; Jura et al. 2007, ApJ 663, 1285; Farihi et al. 2008, ApJ 674,431; Jura et al. 2009, AJ 137, 3191; Reach et al. 2009, ApJ 693, 697; Farihi et al. 2009, ApJ 694, 805; Brinkworth et al. 2009, ApJ 696, 1402; Farihi et al. 2010, ApJ 714, 1386; Dufour et al. 2010, ApJ 719, 803; Vennes et al. 2010, MNRAS 404, L40; Farihi et al. 2011, ApJ 728, L8; Debes et al. 2011, ApJ 729, 4; Farihi et al. 2012, MNRAS 421, 1635; Barber et al. 2012, ApJ 760, 26

Papakolea Beach, Hawaii: Olivine

Dust around ~40 white dwarfs

Zuckerman et al. 1987, *Nature* 330, 138; Graham et al. 1990, . . . 357, 216; Kilic et al. 2005, ApJ 632, L115; Becklin et al. 2005, ApJ 632, L119; Reach et al. 2005, ApJ 635, L161; Jura et al. 2007, AJ 133, 1927; Kilic et al. 2007, ApJ 660, 641; von Hippel et al. 2007, ApJ 662, 544; Jura et al. 2007, ApJ 663, 1285; Farihi et al. 2008, ApJ 674,431; Jura et al. 2009, AJ 137, 3191; Reach et al. 2009, ApJ 693, 697; Farihi et al. 2009, ApJ 694, 805; Brinkworth et al. 2009, ApJ 696, 1402; Farihi et al. 2010, ApJ 714, 1386; Dufour et al. 2010, ApJ 719, 803; Vennes et al. 2010, MNRAS 404, L40; Farihi et al. 2011, ApJ 728, L8; Debes et al. 2011, ApJ 729, 4; Farihi et al. 2012, MNRAS 421, 1635; Barber et al. 2012, ApJ 760, 26

Scattering planetesimals towards the WD... and maybe moons & planets $R_{\odot} \simeq WD$ Roche radius MS WD GB $M_{\star}(t=0)=2.5M_{\star}$ 100 pericentre/au 10 Rmax 0.1 10-2 Rroche 11 12 13 14 40 time/Gyr 1998/06/01 00:28

SOHO Lasco C2 data

Veras & Gänsicke 2015, MNRAS 447 149 Payne et al. 2017, MNRAS 464, 2557 Signposts of evolved planetary systems:

metals
dust discs
gas discs

Gaseous debris discs

Gaseous debris discs

Precession on ≈ 25 year period (GR?) !! orbital period ≈ hours !! ⇒ mechanism to maintain intensity pattern needed

Familiar debris rings

Debris rings on steroids

Signposts of evolved planetary systems:

metals
dust discs
gas discs
solid planetesimals

Spectroscopic detection of a coherent 123.4min period \Rightarrow A solid planetesimal

5 nights @ GTC in 2017 & 2018, 519 spectra, ~140sec cadence

Manser et al. 2019, Science 364, 66
Why a solid planetesimal?

- Period stable for > 4400 orbital cycles
 ⇒ no plausible mechanism for disc origin
- No RV variation ⇒ Mp < 7MJ
- Stable against tidal disruption @ P=123.4min $\Rightarrow \rho \simeq 8 \text{ gcm}^{-3}$ for spherical shape / internal strength $\Rightarrow 4 \leq \text{size} \leq 600 \text{km}$
- Planetesimal may be the source of the CaII gas ⇒ cause of the ~25yr precession?

Another gaseous debris disc. Wait: H, O & S?

Gänsicke et al. Nature in press

 \doteq volatiles

Quick look into solar-system textbooks ⇒ this white dwarf is evaporating and accreting a <u>close-in giant planet</u>!

layers on the giant planets.

White dwarfs are <u>GREAT</u> at photo-evaporating giant planets Schreiber et al. ApJ Letters in press

Signposts of evolved planetary systems:

- metals

- dust discs
- gas discs
- solid planetesimals
 transits

WD1145+017: the smoking gun metals, dust, gas & transits

Vanderburg et al. 2015, Nature 526, 546

Gänsicke et al. 2016, ApJL 818, 7 Rappaport et al. 2016, MNRAS 458, 3904 Xu et al. 2016, ApJL 816, 22 Redfield et al. 2017, ApJ 839, 42

Gary et al. 2017, MNRAS 465, 3267 Hallakoun et al. 2017, MNRAS 469, 3213

Large occulters

Average extinction $\simeq 10\%$ $\Rightarrow dM/dt \sim 10^{11} g/s$

 \sim 3min duration ⇒ R_{cloud} ≥ 2-4R_{wd}

Gänsicke et al. 2016, ApJ 818, L7

Large occulters

~3min duration \Rightarrow R_{cloud} \gtrsim 2-4R_{wd}

Outburst on 67P/Churyumov–Gerasimenko observed by ROSETTA

Gänsicke et al. 2016, ApJ 818, L7

Ever-changing shapes...

WD 1145+017 photometric observations during eight months of high activity

B. L. Gary,^{1*} S. Rappaport,^{2*} T. G. Kaye,³ R. Alonso⁴ and F.-J. Hambsch ¹Hereford Arizona Observatory, Hereford, AZ 85615, USA ²Department of Physics. Kavli Institute for Astrophysics and Space Research. M.I.T., Cambridge, MA 02139. USA ³Raeme 3.0 ⁴Institu 2.8 G6420 B-DIP G6121 APR 27b ⁵Vereni 2.6 2.4 APR 27a 2.2 NORMALIZED FLUX (with offsets) 2.0 APR 26 1.8 1.6 **B-DIP APR 25** 1.4 1.2 APR 24 1.0 0.8 PR 23 0.6 0.4 0.2 0.0 $\phi = +0.5$ $\phi = -0.5$ $\phi = 0.0$ PHASE, USING P = 4.4916 HRS, BJD = 2457480.8083

... but (mostly) stable periods!

Transits	Period (hr)	Uncertainty (hr)	
a	4.49337	0.00021	
b	4.49252	0.00011	
c	4.49257	0.00052	o-orbital
d	4.49355	0.00040	
e	4.49110	0.00006	- 5sec!
f	4.49513	0.00046	
mean	4.4930	0.0013	
Gänsicke et al. 2016, ApJ 818, L7	$\begin{array}{c} 0.6 \\ 0.4 \\ e \\ 0.2 \\ f \\ 0.2 \\ f \\ 0 \\ -0.2 \\ -0.4 \\ -0.6 \\ -0.6 \\ 36 \end{array}$	Orbital cycles 50 100 	150 200 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Gänsicke et al. 2016, ApJ 818, L7 Rappaport et al. 2016, MNRAS 458, 3904 Gary et al. 2016, MNRAS 465, 3267

- Multiple bodies co-orbiting WD1145+017
- Transits caused by dust/gas "plumes"
- Transit activity > 2 years
- Individual transit periods stable over 100 of orbital cycles, but differ by ~5-10 sec

Total disruptionStable for >90 days,within a few daysIntermittent mantle disruptionVeras et al. 2017, MNRAS 465, 1008

Gänsicke et al. 2016, ApJ 818, L7 Rappaport et al. 2016, MNRAS 458, 3904 Gary et al. 2016, MNRAS 465, 3267

- Multiple bodies co-orbiting WD1145+017
- Transits caused by dust/gas "plumes"
- Transit activity > 2 years
- Individual transit periods stable over 100 of orbital cycles, but differ by ~5-10 sec

Out: Gurri et al. 2017, MNRAS 464, 321 Veras et al. 2017, MNRAS 465, 1008

- Differentiated parent body @ P=4.498h
- M≲10²⁰kg
- ρ≃ **3.5 g/cm³**
- Nearly-circular orbit
- Releases sporadically fragments

Gänsicke et al. 2016, ApJ 818, L7 In Rappaport et al. 2016, MNRAS 458, 3904 Gary et al. 2016, MNRAS 465, 3267

- Multiple bo But there is 1145+017
- Transits cause lumes'
- Transit activ
- Individual trai stable over 100 of ***SO*** orbital cyclo ov ~5-10 sec *much*
 - Out: Gurri et al. 2* more 465, 1008
- Differentiated parent body @ P=4.498h
- M≲10²⁰kg • $\rho \simeq 3.5 \text{ g/cm}^3$ going on!
- Nearly-circular orbit
- Releases sporadically fragments

HiPERCAM: 5sec @ 10.4m GTC 🛞

Evidence for short-lived, drifting fragments

http://www.brucegary.net/1145/

The transit activity varies dramatically

http://www.brucegary.net/1145/

One = freak Two = coincidence Three = a class

 \Rightarrow need to identify more systems

Transits #2: ZTF J013906.17+524536.89

Vanderbosch et al. arXiv:1908.09839

Transits #2: P~110 days(!) We need your help with this one! Vanderbosch et al. arXiv:1908.09839

Cool, old WD, T~10500K Possibly accreting (Ca K detected) Highly eccentric orbit crossing the Roche radius?

#3 has been found

(embargoed by lead author)

Bulk abundances

Or

What are our and other worlds made out of?

Planetary abundances in the solar system

Bulk compositions in the solar system

- **1.** Meteorite abundances
- 2. Cosmo-chemistry
- **3.** Planet formation models

Meteor crater, Arizona

A planetary scientists view of meteorites

Meteoritics & Planetary Science 51, Nr 7, 1301–1309 (2016) doi: 10.1111/maps.12664

The meteoritic origin of Tutankhamun's iron dagger blade

Photospheric metal pollution by planetary debris

Metals as tracer of evolved planetary systems

T<13000K: Ca H/K

Temperature ↑ Ca H/K↓

⇒ UV spectroscopy

Koester, Gänsicke, Farihi 2014 A&A 566, A34

Cycle 18-25 snapshot program

An unbiased HST/COS survey of ~160 hydrogen-atmosphere white dwarfs

⇒ UV range sensitive to volatiles
 ⇒ short diffusion time scale (days)
 ⇒ if polluted, these stars accrete now
 ⇒ accurate abundances

Koester, Gänsicke, Farihi 2014 A&A 566, A34

O, Mg, Si, and Fe are the major constituents of the debris (*and also make up ~93% of the Earth*), variations similar to solar system

Zuckerman et al. 2011, ApJ 739, 101 Melis et al. 2011, ApJ 732, 90 Klein et al. 2011, ApJ 741, 64 Gänsicke et al. 2012, MNRAS 424, 333 Jura et al. 2015, ApJ 799, 109 Xu et al. 2014, ApJ 783, 79 Jura & Young, 2014, ARE&PS 42, 1 Wilson et al. 2016, MNRAS 459, 3282

O, Mg, Si, and Fe are the major constituents of the debris (*and also make up ~93% of the Earth*), variations similar to solar system

 Volatile-depleted, similar to bulk Earth ⇒ "rocky"

Zuckerman et al. 2011, ApJ 739, 101 Melis et al. 2011, ApJ 732, 90 Klein et al. 2011, ApJ 741, 64 Gänsicke et al. 2012, MNRAS 424, 333 Jura et al. 2015, ApJ 799, 109 Xu et al. 2014, ApJ 783, 79 Jura & Young, 2014, ARE&PS 42, 1 Wilson et al. 2016, MNRAS 459, 3282

O, Mg, Si, and Fe are the major constituents of the debris (*and also make up ~93% of the Earth*), variations similar to solar system

O, Mg, Si, and Fe are the major constituents of the debris (*and also make up ~93% of the Earth*), variations similar to solar system

- Volatile-depleted, similar to bulk Earth ⇒ "rocky"
- Refractory litophiles Ca/Al very similar to solar system bodies
- Evidence for differentiation (Fe, S, Cr overabundance)

Zuckerman et al. 2011, ApJ 739, 101 Melis et al. 2011, ApJ 732, 90 Klein et al. 2011, ApJ 741, 64 Gänsicke et al. 2012, MNRAS 424, 333 Jura et al. 2015, ApJ 799, 109 Xu et al. 2014, ApJ 783, 79 Jura & Young, 2014, ARE&PS 42, 1 Wilson et al. 2016, MNRAS 459, 3282

Mesosiderite-like exo-asteroids

Mesosiderite "Vaca Muerta" origin from a ~ 200-400 km differentiated asteroid (Scott et al. 2001, M&PS 36, 869)

~230 old (1-7Gyr) planetary systems Hollands et al. 2017, MNRAS 467, 4970

Rocks = MgO, SiO₂, FeO, Fe₂O₃, Al₂O₃, CaO, TiO₂, Cr₂O₃, MnO, ...

• H_2O mass fraction: 25-40% \Rightarrow Ceres-like

... similar to Ceres ...

Ceres' layers

Water delivery to dry planets

Mass: $9.0x10^{23}g$ Mass fraction of H20:25%Mass of H20: $2.2x10^{23}g$

7 x

Mass: $\T & 6.0x10^{27}g$ Mass fraction of H20:0.023%Mass of H20: $1.4x10^{24}g$

Water delivery to dry planets

 Mass:
 6.0x10²⁷g

 Mass fraction of H_20 :
 0.023%

 Mass of H_20 :
 1.4x10²⁴g

Planetary systems around white dwarfs are as common as around main-sequence stars

They provide detailed insight into the bulk abundances of exo-planetary systems. Most planetesimals are rocky, some contain significant amounts of water.

Disc life time? ~10⁵yr

Jura 2008, AJ135, 1785 Girven et al. 2012, ApJ 749, 152

Gas discs: ~0.1% ↓ Dust discs: ~1%

Transits: 3

Metal-pollution:25-50%

Bergfors et al. 2014, MNRAS 444, 2174 Rochetto et al. 2014, MNRAS 449, 564

Parent body masses? 10²⁰-10²⁵g Girven et al. 2012, ApJ 749, 152

Many small vs few large events? Wyatt et al. 2014, MNRAS 439, 3371

Underlying planetary system? Veras et al. 2016, MNRAS 458, 3942

Tides... Disruption... Radiation effects (PR, YORP, Yarkovsky)...

